Serum lipoproteins promote efficient presentation of the malaria virulence protein PfEMP1 at the erythrocyte surface.
نویسندگان
چکیده
The virulence of the malaria parasite Plasmodium falciparum is related to its ability to express a family of adhesive proteins known as P. falciparum erythrocyte membrane protein 1 (PfEMP1) at the infected red blood cell surface. The mechanism for the transport and delivery of these adhesins to the erythrocyte membrane is only poorly understood. In this work, we have used specific immune reagents in a flow cytometric assay to monitor the effects of serum components on the surface presentation of PfEMP1. We show that efficient presentation of the A4 and VAR2CSA variants of PfEMP1 is dependent on the presence of serum in the bathing medium during parasite maturation. Lipid-loaded albumin supports parasite growth but allows much less efficient presentation of PfEMP1 at the red blood cell surface. Analysis of the serum components reveals that lipoproteins, especially those of the low-density lipoprotein fraction, promote PfEMP1 presentation. Cytoadhesion of infected erythrocytes to the host cell receptors CD36 and ICAM-1 is also decreased in infected erythrocytes cultured in the absence of serum. The defect appears to be in the transfer of PfEMP1 from parasite-derived structures known as the Maurer's clefts to the erythrocyte membrane or in surface conformation rather than a down-regulation or switching of particular PfEMP1 variants.
منابع مشابه
Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected erythrocyte surface.
A key feature of Plasmodium falciparum, the parasite causing the most severe form of malaria in humans, is its ability to export parasite molecules onto the surface of the erythrocyte. The major virulence factor and variant surface protein PfEMP1 (P falciparum erythrocyte membrane protein 1) acts as a ligand to adhere to endothelial receptors avoiding splenic clearance. Because the erythrocyte ...
متن کاملDelivery of the malaria virulence protein PfEMP1 to the erythrocyte surface requires cholesterol-rich domains.
The particular virulence of the human malaria parasite Plasmodium falciparum derives from export of parasite-encoded proteins to the surface of the mature erythrocytes in which it resides. The mechanisms and machinery for the export of proteins to the erythrocyte membrane are largely unknown. In other eukaryotic cells, cholesterol-rich membrane microdomains or "rafts" have been shown to play an...
متن کاملTrafficking of the major virulence factor to the surface of transfected P. falciparum-infected erythrocytes.
After invading human red blood cells (RBCs) the malaria parasite Plasmodium falciparum remodels the host cell by trafficking proteins to the RBC compartment. The virulence protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) is responsible for cytoadherence of infected cells to host endothelial receptors. This protein is exported across the parasite plasma membrane and parasitophorous ...
متن کاملPlasmodium falciparum Plasmodium helical interspersed subtelomeric proteins contribute to cytoadherence and anchor P. falciparum erythrocyte membrane protein 1 to the host cell cytoskeleton
Adherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene fam...
متن کاملA Maurer's cleft–associated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells
The high mortality of Plasmodium falciparum malaria is the result of a parasite ligand, PfEMP1 (P. falciparum) erythrocyte membrane protein 1), on the surface of infected red blood cells (IRBCs), which adheres to the vascular endothelium and causes the sequestration of IRBCs in the microvasculature. PfEMP1 transport to the IRBC surface involves Maurer's clefts, which are parasite-derived membra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eukaryotic cell
دوره 6 9 شماره
صفحات -
تاریخ انتشار 2007